INDIAN SCHOOL SOHAR TERM II EXAMINATION (2022-23) MATHEMATICS

CLASS: XI	MAX. MARKS: 80
DATE: /03/2023	TIME: 3 HOURS

General Instructions:

1. This question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.

4. Section C has 6 Short Answer (SA) type questions of 3 marks each.

5. Section D has 4 Long Answer (LA) type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

SECTION – A								
(Multiple Choice Questions)								
Each question carries 1 mark								
1.	In a class of 70 students, 25 students play cricket and 20 students play tennis, and 10 M/							
	students play both the games. Then, the number of students who play neither is							
	a) 0 b) 25 c) 35 d) 45							
2.	The domain and range of real function f defined by f (x) = $\sqrt{x-1}$ is given by							
	a) Domain = $(1, \infty)$, Range = $(0, \infty)$ b) Domain = $[1, \infty)$, Range = $(0, \infty)$	1						
	c) Domain = $[1, \infty)$, Range = $[0, \infty)$ d) Domain = $[1, \infty)$, Range = $[0, \infty)$							
3.	If tan A = $1/2$, tan B = $1/3$, then tan (2A + B) is equal to	1						
	a) 1 b) 2 c) 3 d) 4							
4.	The value of sin 50° – sin 70° + sin 10° is equal to	1						
	a) 1 b) 0 c) 1/2 d) 2							
5.	The complex number z which satisfies the condition $\left \frac{i+z}{i-z}\right = 1$ lies on	1						
	a)Circle $x^2+y^2=1$ b)the x-axis c) the y - axis d) the line $x + y = 1$							
6.	The number of different signals that can be generated by arranging at least 2 flags in	1						
	order (one below the other) on a vertical staff, if five different flags are available							
	a)20 b) 120 c) 60 d) 320							
7.	How many different 4-letter words can be formed with the letters of the word	1						
	'JAIPUR' when A and I are always to be included?							
	a)144 b) 24 c) 6 d) 12							
8.	The coefficient of x 15 in the expansion of (x – x 2) 10	1						
	a)232 b) -156 c) -252 d) 176							

9	If the sum of the infinite G.P. is $\frac{4}{3}$ and its first term is $\frac{3}{4}$ then its common ratio is					
	a) $\frac{7}{2}$ b) $\frac{9}{2}$ c) $\frac{1}{2}$ d) $\frac{7}{2}$					
	, 16 , 16 , 9 , 9					
10	If the focus of a parabola is $(0, -3)$ and its directrix is $y = 3$, then its equation is	1				
	a) $x^2 = -12y$ b) $x^2 = 12y$ c) $y^2 = -12x$ d) $y^2 = 12x$					
11	$\lim_{x \to 1} \frac{\sin x}{x(1 + \cos x)}$ is equal to					
	a)1 b) 0 c) $1/2$ d) $-1/2$					
10		1				
12	$\lim_{x \to 0} \frac{ x }{x}$ is equal to	T				
	a)1 b) 0 c) -1 d) does not exist					
13	If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, then dy/dx at x = 1 is	1				
	a) 0 b) -1/2 c) 1/2 d) 1					
14	The inclination of the line $x - y + 3 = 0$ with the positive direction of x-axis is	1				
	a) -135° b) 135° c) - 45° d) 45°					
15	The ratio in which the line joining $(2,4,5)$ and $(-3,5-9)$ is divide by the yz Plane is	1				
16	a) 1:3 b) 1:2 c) 2:3 d) 4:3 The mean deviation of the data 2, 0, 0, 2, 6, 0, 4 from the mean is	1				
10	(a) 2 2 3 (b) 2 5 7 (c) 3 2 3 (d) 3 5 7	T				
17	Three numbers are choosen from 1 to 20, then the probability that they are	1				
	consecutive					
	a) $\frac{3}{100}$ b) $\frac{187}{100}$ c) $\frac{18}{20}$ d) $\frac{6}{20}$					
18	If A and B are mutually exclusive events, P (A) = 0.35 and P (B) = 0.45 then P(A' \cap B')	1				
	is					
	a) 0.80 b) .10 c) .20 d)0					
	ASSEKTION-REASON BASED QUESTIONS					
	Reason (R) Choose the correct answer out of the following choices					
	(a) Both A and R are true and R is the correct explanation of A.					
	(b) Both A and R are true but R is not the correct explanation of A.					
	(c) A is true but R is false.					
40	(d) A is false but R is true.	4				
19	Assertion (A) : The slope of the line $x + 7y = 0$ is $1/7$ and y-intercept is 0. Reason (B): The slope of the line $6x + 2y = 5 = 0$ is -2 and vintercept is $5/2$	1				
20	Assertion (A) If the numbers $-2/7$ $k = -7/2$ are in G.P. then k = +1	1				
	Reason (R): If a, b, c are in G.P. then ac = h^2					
	SECTION B					
	(This section comprises of very short answer type questions (VSA) of 2 marks each)					
21	For all sets A, B and C Is (A \cap B) U C = A \cap (B U C)? Justify your statement using	2				
	example.					
22	Find the radius of the circle in which a central angle of 60° intercepts an arc of length	2				
	37.4 cm.					

23	Solve : $ 3 - 4x \ge 9$	2			
	OR				
	The longest side of a triangle is twice the shortest side and the third side is 2cm				
	longer than the shortest side. If the perimeter of the triangle is more than 166 cm				
24	In how many ways can 4 red 3 yellow and 2 green discs be arranged in a row if the	2			
	discs of the same colour are indistinguishable?	-			
	The letters of the word 'OLIGHT' are written in all possible orders and these words				
	are written out as in a dictionary. Find the rank of the word 'TOUGH' in this				
	dictionary				
25		2			
20	Evaluate: $\lim_{x \to a} \frac{1-x^{\overline{5}}}{3}$	-			
	$x \rightarrow 1$ $1 - x^{\frac{3}{5}}$				
	SECTION C				
	(This section comprises of short answer type questions (SA) of 3 marks each)				
26	Find the domain and range of the function f (x) = $\frac{4}{1-x^2}$	3			
27	Evaluate: $\sqrt{3} \cos ec \ 20^{\circ} - \sec 20^{\circ}$	3			
28	If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4(x^2 - y^2)$	3			
	OR				
	Solve each of the following equation: $x^2 + \frac{x}{\sqrt{2}} + 1 = 0$				
29	Find the derivative of cos(3x +1) using the first principle.	3			
	OR				
	Find $\frac{dy}{dx}$ when $y = \frac{(3x+1)sin^2x}{(x-1)}$				
30	Find the equation of the line through the point (3,2) which makes an angle of 45°	3			
	with the line $x - 2y = 3$.				
31	Between 1 and 31, <i>m</i> numbers have been inserted in such a way that the resulting	3			
	sequence is an A. P. and the ratio of 7 th and $(m-1)^{th}$ numbers is 5 : 9. Find the value				
	OR OR				
	Find the value of n so that $a^{n+1}+b^{n+1}$ may be the geometric mean between a and b				
	$\frac{1}{a^{n}+b^{n}}$ They be the geometric mean between a and b.				
SECTION D (This section comprises of long answer type questions (LA) of 5 marks each)					
32	Prove that: $\cos \frac{2\pi}{2} + \cos \frac{4\pi}{2} + \cos \frac{6\pi}{2} = \frac{-1}{2}$	5			
	\mathbf{OP}				
	$\sin 8x \cos x - \cos 3x \sin 6x$				
	Prove that: $\frac{1}{\cos 2x \cos x - \sin 3x \sin 4x} = \tan 2x$				
33	The coefficients of the $(r - 1)^{th}$, r^{th} and $(r + 1)^{th}$ terms in the expansion of $(x + 1)^{n}$	5			
	are in the ratio 1 : 3 : 5. Find n and r.				

34	Find the equation of the circle passing through the points (2,3) and (-1,1) and					5			
	whose centre is on the line $x - 3y - 11 = 0$.								
	C	DR							
	Find t	he coordinate	of the foci	, the vertio	ces, the ler	ngth of ma	jor axis, th	ne minor	
	axis, the eccentricity and the length of latus rectum of the conic: $3 x^2 + 2y^2 = 18$.								
35	Calcul	ate mean, vari	ance and	standard d	eviation fo	or the follo	wing distr	ibution.	5
		Classes	5-10	10 - 15	15 – 20	20 - 25	25 - 30	30 - 35	
	$\begin{vmatrix} $								
		Frequency	2	9	29	54	11	5	
		L		SEC	TION E			1	
(This sec	tion co	mprises of cas	e study /p	bassage-ba	sed quest	ions of 4 r	narks each	n with two su	ıb-parts.
First two	case s	tudy question	s have thr	ee sub-par	rts (i), (ii),	(iii) of mai	·ks 1, 1, 2	respectively.	The third
case stue	dy ques	stion has two s	ub marks	each.)					
36	The st	udents of class	s XI were g	given a tasl	k to arrang	ge all letter	s of the w	ord	
	EQUA	TIONS in all po	ssible way	/S.					
	Based	on the above	informatio	on, answer	the follov	ving quest	ions:		
	i) In h	ow many ways	can all let	ters of the	e word EQI	JATIONS b	e arrange	d?	1
	ii) In h	low many way	s can all le	tters of th	e word EQ	UATIONS I	pe arrange	ed so that	1
	the po	ositions of vow	els and co	nsonants a	are unalter	red?			
	iii) In how many ways can all letters of the word EQUATIONS be arranged so that					2			
	all vowels are occur together?								
	OR								
	iii) In how many ways can all letters of the word EQUATIONS be arranged so that								
	all consonants are occur together?								
37	An uri	n contains twe	nty white	slips of pa	per numbe	ered from :	1 through	20, ten red	
	slips of paper numbered from 1 through 10, forty yellow slips of paper numbered								
	from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If								
	these	80 slips of pap	er are tho	roughly sh	uffled so t	hat each s	lip has the	e same	
	proba	bility of being	drawn.						
	Based	on the above	informatio	on, answe	r the follo	wing quest	ions:		
	i) Wha	at is the proba	bility that	slip drawn	is red or y	ellow.			1
	ii) Wh	at is the proba	bility that	slip drawr	is numbe	red 1, 2, 4	,6.or 8		1
	iii) Wł	nat is the prob	ability that	slip drawı	n is numbe	ered 5, 15,	25, or 35;		2
	OF	R							
	iii) Wł	hat is the proba	ability that	slip drawı	n is white a	and numb	ered highe	er than 12 or	
	yellov	v and numbere	ed higher t	han 26					
38	In a co	ollege , out of 2	L50 studer	nts 15 stud	ents offer	ed Mather	natics only	/, 12	
	stude	nts offered Ch	emistry, 8	students	ottered on	ly Physics,	40 offere	d Physics	
	and M	lathematics, 2	0 ottered I	hysics and	d Chemistr	y, 10 stud	ents offere	ed	
	Chem	istry and Math	ematics,	65 student	s offered I	hysics			
	i)	Find the	number of	students	who offere	ed all the t	hree subje	ects.	2
	ii)	Find the	number of	students	who offere	ed Mathen	natics .		2

-----THE END ------

MATHS TERM II-2022-23 SCORING KEY STD XI

	(SECTION –A)	
1.	a) 35	MARKS
		1
2.	d) Domain = [1, ∞), Range = [0, ∞)	1
3.	b) 3	1
4.	a) 0	1
5.	b)the x-axis	1
6.	d)320	1
7.	a) 144	1
8.	b)-252	1
9	a) 7/16	1
10	a) $x^2 = -12y$	1
11	c)1/2	1
12	d)does not exist	1
13	a)0	1
14	d)45	1
15	b) 2:3	1
16	c) 2.57	1
17	a) $18/20 c 3= 3/190$	1
18	(c) $1 - P(A \cup B) = 180 = .20$ (P(A \cap B)=0;mutually exclusive given)	1
19	d)	1
20	a)	1
	SECTIONB	1
21	$(A \cap B) \cup C = (\{1, 2, 3\} \cap \{2, 3, 5\}) \cup \{4, 5, 6\}$	1
	$= \{2, 3\} \cup \{4, 5, 6\}$	
	$= \{2, 3, 4, 5, 6\}$	
	$A \cap (B \cup C) = \{1, 2, 3\} \cap [\{2, 3, 5\} \cup \{4, 5, 6\}]$	
	$= \{1, 2, 3\} \cap \{2, 3, 4, 5, 6\}$	1
	= {2, 3}	
	$(A \cap B) \cup C \neq A \cap (B \cup C)$	
22	Here $l = 37.4$ cm and $\theta = 60^\circ = \frac{60\pi}{180}$ radian $= \frac{\pi}{3}$	1
	by $r = \frac{l}{\theta}$, we have	
	$r = \frac{37.4 \times 3}{\pi} = \frac{37.4 \times 3 \times 7}{22} = 35.7 \text{ cm}$	

23	$3 - 4r \le -9$ or $3 - 4r \ge 9$	1
	$-4x \le -12$ or $-4x \ge 6$	
	$-4x \le -1201 - 4x \ge 0$	
	$x \ge 3$ or $x \le \frac{-3}{2}$	
	. 2	1
	$x \in (-\infty, \frac{-3}{-}] \cup [3, \infty)$	
	OR	
	x > 41, minimum length is 41cm	
24	Therefore, the number of arrangements $\frac{9!}{4!3!2!} = 1260$.	1 1
	OR	
	Bank -80	
25		1,1
20		1+1
	1/5	
	SECTION C	
26	$Domain = \mathbf{P} \{-1, 1\} (steps)$	1
20	$Range = (-\infty, 0) \cup [4 \infty) \text{ (steps)}$	1+1
27		1
	$\sqrt{3} \operatorname{cosec} 20^\circ - \sec 20^\circ = \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}$	
	$= \frac{\sqrt{3}\cos 20^{\circ} - \sin 20^{\circ}}{\sin 20^{\circ}\cos 20^{\circ}} = 4 \left(\frac{\frac{\sqrt{3}}{2}\cos 20^{\circ} - \frac{1}{2}\sin 20^{\circ}}{2\sin 20^{\circ}\cos 20^{\circ}} \right)$	1
	$= 4\left(\frac{\sin 60^{\circ} \cos 20^{\circ} - \cos 60^{\circ} \sin 20^{\circ}}{\sin 40^{\circ}}\right)$	1
	(Why?)	
	$= 4 \left(\frac{\sin (60^{\circ} - 20^{\circ})}{\sin 40^{\circ}} \right) = 4 $ (Why?)	
28	Proper steps	1+1+1
	OR	
	$\frac{-b \pm \sqrt{D}}{1} = \frac{-1 \pm \sqrt{-7}}{-1 \pm \sqrt{7}} = \frac{-1 \pm \sqrt{7} i}{-1 \pm \sqrt{7} i}$	
	$2a 2\sqrt{2} 2\sqrt{2}$	
29	$Dy/dx = 3 \sin (3x+1)$	1
	Or	
	when $y = \frac{(3x+1)sin^2x}{1}$	1
	(x-1) dy/dy (proper steps using up and u/y rule)	1
30	the equation of the line through the point (3.2) which makes an angle of 45^0	1
~~	with the line $x - 2y = 3$.	1
		1

	$\tan 45 = \left \frac{m - 1/2}{4} \right $	
	$m-3 - \frac{1}{3}$	
	3x-y-7=0, $x+3y-9=0$	
31	$30 = 1 + (m+1) d$, $d = 30/m+1 A_7/A_{m-1} = 5/9$	1+1+1
	Solving we get $d = 2$; m=14	
	OR $n = -1/2$	
	SECTION D	
32	$\cos \frac{2\pi}{2} + \cos \frac{4\pi}{2} + \sin \frac{6\pi}{2} = \frac{-1}{2}$	1
	7 7 7 $2Let \mathbf{v} = \frac{\pi}{2}$	2
	$\frac{1}{7} = \frac{1}{2} \left(2 \cos^2 \pi \sin^2 \frac{1}{2} \cos^4 \pi \sin^2 \frac{1}{2} \cos^2 \frac{1}{2} \cos^2 \frac{1}{2} \cos^2 \frac{1}{2} \sin^2 \frac{1}{2} \cos^2 \frac{1}{2} \sin^2 \frac$	2
	$= 1/2 \sin x (2 \cos 2x \sin x + 2 \cos 4x \sin x + 2 \cos 6x \sin x) (\text{ using formula})$	
	$= 1/2 \sin x (0 - \sin x) = -1/2$	
	$\sin 8x \cos x - \cos 3x \sin 6x$	
	$\frac{1}{\cos 2x \cos x - \sin 3x \sin 4x} = \tan 2x \text{ (solve by transformation for mula)}$	
33	nCr : nCr-1 = 5:3, nCr-1 : nCr-2 = 3:1	1
	N=7 r=3	2+2
34		1
	Since the circle passes through points $(2, 3)$ and $(-1, 1)$,	
	$(2 - h)^2 + (3 - k)^2 = r^2 \dots (1)$	
	$(-1 - h)^2 + (1 - k)^2 = r^2 \dots (2)$	
	$\Rightarrow 6h + 4k = 11 \dots (4)$	1
	On solving equations (3) and (4), we obtain $h = \frac{7}{2}$ and $k = \frac{-3}{2}$.	
		1
	Thus, the equation of the required circle is	1
	$\left(x-7\right)^{2}+\left(x+5\right)^{2}=130$	
	$\begin{pmatrix} x-\frac{1}{2} \end{pmatrix} + \begin{pmatrix} y+\frac{1}{2} \end{pmatrix} = \frac{1}{4}$	
	OR	1
	6	
	2√6	
	$(0,\pm\sqrt{3})$	
	$(0,\pm 3)$	1
	$e = \frac{1}{\sqrt{3}}$	
	$y = \pm 3\sqrt{3}$	
35	Mean = 21	2
	SD= 4.87	2+1
	SECTION E	
36 1)	9! 2) 4! × 5! 3)5! × 5! OR 5! × 6!	1+1+2
37		1
1) , 50/80=	5/8 2) 20/80=1/4 3)8/80= 1/10 or 22/80 = 11/40	1+2
20 4) 2		2
30. 1) 3 2) 62		2
-j 02		۷

MATHS TERM II -2022-23 STD XI BLUE PRINT

SL.NO	CHAPTER	1 mark	2 marks	3 marks	4mark	5 marks	total
1	Sets	1(1)	2(1)		4(1)		7(3)
2	Relations and Functions	1(1)		3(1)			4(2)
3	Trigonometric Functions	1(1)+1(1)	2(1)	3(1)		5(1)	12(5)
5	Complex Numbers and Quadratic Equations	1(1)		3(1)			4(2)
6	Linear Inequalities		2(1)				2(1)
7	Permutations and Combinations	1(1)+1(1)	2(1)		4(1)		8(4)
8	Binomial Theorem	1(1)				5(1)	6(2)
9	Sequence and series	1(1)+1(1)		3(1)			5(3)
11	Straight lines	1(1)+1(1)		3(1)			5(3)
12	Conic section	1(1)				5(1)	6(2)
13	3 d	1(1)					1(1)
14	Limits and derivative	1(1)+ 1(1)+1(1)	2(1)	3(1)			8(5)
15	statistics	1(1)				5(1)	6(2)
16	Probability	1(1)+1(1)			4(1)		6(3)
		20(20)	10(5)	18 (6)	12(3)	20(4)	80(38)

Number outside the bracket indicates marks.

✤ Number inside the bracket indicates the no. of question.

✤ One graph per student